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Abstract

This work is concerned with an approach to formu-

lating the multidisciplinary optimization (MDO) problem

that reflects an algorithmic perspective on MDO problem

solution. The algorithmic perspective focuses on formu-

lating the problem in light of the abilities and inabilities

of optimization algorithms, so that the resulting nonlin-

ear programming problem can be solved reliably and effi-

ciently by conventional optimization techniques. We pro-

pose a modular approach to formulating MDO problems

that takes advantage of the problem structure, maximizes

the autonomy of implementation, and allows for multiple

easily interchangeable problem statements to be used de-
pending on the available resources and the characteristics

of the application problem.

Key Words: Autonomy, complex system design, dis-

tributed analysis optimization, multidisciplinary analysis,
multidisciplinary optimization, nonlinear programming,

sensitivities, system synthesis

Introduction

The underlying theme of this and related papers [ 1-3]

is the strong influence of the analytical features of multi-

disciplinary optimization (MDO) problem formulation on

the ability of nonlinear programming (NLP) algorithms to

solve the problem reliably and efficiently. The compan-
ion paper [3] examines several distributed formulations
for MDO and concludes that the desirable trait of auton-

omy for the subsystems that comprise the MDO problem
may come at a price: In some of the approaches consid-

ered, the system-level constraints introduced to relax the

interdisciplinary coupling and enable disciplinary auton-

omy can cause analytical and computational difficulties

for optimization algorithms.

The premise of the present paper is that algorith-

mic considerations should enter strongly into decisions
about problem lbrmulation. We focus both on the MDO

problem structure--in particular, the underlying multi-

disciplinary analysis--and the need to solve the prob-

lem reliably and efficiently. We propose a modular ap-

proach to MDO problem formulation that reflects both

concerns. We examine several MDO problem formula-
tions and show how the formulations are related to one

another. We call the approach modular because, given

the appropriate disciplinary sensitivity information, it is
straightforward to pass from one formulation to another

in the context of optimization. Similar techniques were

used in [4] to derive the flexible algorithms for different
classes of formulations in the framework of reduced basis

algorithms.

The conclusion (and contribution) of this paper may

be summarized as follows: an appropriate implementa-

tion of the disciplinary information allows one to com-

bine the disciplinary "pieces" into several MDO problem

formulations and solution algorithms with minimal extra

effort. The re-use of information is facilitated by the struc-

ture of the problem due to disciplinary analyses and inter-
disciplinary coupling. That is, the disciplinary analyses

can be viewed as nonlinear equality constraints. Using

this fact, function and derivative information, if imple-

mented appropriately, can be easily re-used in the context

of reduced-basis optimization algorithms. Moreover, the

function and derivative information required for optimiza-

tion is similar for all derivative-based algorithms. We ar-

gue that the structure is not only a convenient device, but

should be exploited in order to formulate and solve the op-
timization problem efficiently in the framework of robust

nonlinear programming algorithms.

Multidisciplinary analysis

For clarity, we present our discussion of formulations

for a two-discipline MDO problem. Discipline 1 and Dis-

cipline 2 may represent, for instance, the aeroelastic in-

teraction between aerodynamics and structural response

for a wing in steady-state flow. In this section, we briefly

present the multidisciplinary analysis and the motivation
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forthepresentwork.
Weassumethateachconstituentsubsystemof the

two-disciplinemodelproblemisbasedonadisciplinary
analysis.Eachdisciplinetakesasitsinputasetofdisci-
plinarydesignvariablesl/, a set of shared or system-level

design variables s, and some parameters. The variables/t

and/2 are local to Disciplines 1 and 2, respectively. Let

the vector ai represent the totality of outputs from a given

discipline, including all data passed to the other discipline

as parameters and quantities passed to design constraints

and objectives, if any. In the context of MDO, the parame-

ters fed into Discipline i are derived from the analysis out-

puts a i, j :J: i, of the other discipline, and are not directly

manipulated by the designer in Discipline i. We denote
the totality of design variables by x, i.e., x = (s, It, 1.,).

The coupled multidisciplinary analysis system (MDA)

reflects the physical requirement that a solution simulta-

neously satisfy the two disciplinary analyses. The input

parameters to each discipline are requircd to correspond to

some (or all) of the outputs aj from the other disciplinary

analysis. We write the multidisciplinary analysis as a si-

multaneous system of equations. Given x = (s, ll,l_),

we have a block system

al = Al(S, ll,a2) (1)

a_ = A2(s,I,_,al). (2)

In the context of MDO, the blocks of the system repre-

sent the disciplinary analyses together with the necessary

interdisciplinary couplings.

Solving the first equation results in the analysis out-

puts al of Discipline 1, and solving the second equation

produces the analysis outputs a2 of Discipline 2. The out-
puts are also known as disciplinary responses. The MDA

implicitly defines a_ and a_ as functions of (s, l,,/2):

al = c_l(s,l_,l,.), a2 = a_(s, ll,l_).

In analysis mode or at each iteration of a conventional

optimization procedure, the design variable vector x is

passed to the MDA system. The system is then solved
for the state vector a = (al, a2). The solution is accom-

plished via an iterative procedure such as Gauss-Seidel or
an inexact Newton method.

The implementation of MDA, arguably, takes most of

the integration effort in solving MDO problems. It may

require a degree of assembly of the MDA and extensive

interaction among disciplinary experts. For instance, for

design one needs to develop a sensitivity capability that
involves the MDA. Because MDA is not usually con-

verged to a high degree of accuracy, the computation of
finite-difference derivatives that involve MDA is difficult.

In addition, from the nonlinear programming perspective,

far from solutions, it is preferable not to follow the com-

plicated and expensive constraint manifold detined by so-

lutions of (1)-(2). Instead, the fastest (Newton-based)

optimization algorithms rely on the so-called infeasible

principle that calls for attaining feasibility with respect to

all constraints only at solutions. For these reasons, dis-

pensing with MDA is one of the main motivations of dis-

tributed optimization approaches [5].

However, completely avoiding MDA may be prema-

ture. First, solving the coupled equations (1)-(2) leads

to designs in which the coupled disciplines give a physi-

cally consistent (and thus meaningful) result. Therefore,

the MDA is generally performed at least to obtain a base-

line design. Second, when optimization algorithms are

applied to formulations that decompose the MDA, the in-
termediate iterates or designs will not necessarily satisfy

the MDA (1)-(2) until a solution is reached. Thus, if an

optimization process has to be stopped due to exhausted
resources, the final design may not be physically realiz-

able. And, finally, if the bandwidth of coupling among

the disciplines is great, decomposing MDA may not be

a viable option, due to the need for introducing a large

number of auxiliary variables that assist in decoupling the
MDA.

The approach proposed here attempts to reconcile the

apparent contradiction between the need to establish the

autonomy of integration--the ability to implement the

requisite computational modules independently along the

disciplinary lines--and the current need to keep MDA and

MDA-based optimization methods in the arsenal of MDO.
This is accomplished by considering the modularity (i.e.,

re-usability) of disciplinary information in the context of

MDO formulations and optimization algorithms.

In summary, we do not reject the MDA and MDA-

based optimization problem formulations. Instead, we

propose a computational "recipe" for implementing MDO

problems in a way that facilitates experimentation with

MDO problem formulations.

Formulations of a two-discipline model problem

This section describes several optimization problem

formulations, with a focus on rigorous notation and the

relationship among the described formulations. Having
stated the formulations in detail, we later examine them to

see how we can re-use the disciplinary function and sen-

sitivity information in one formulation in the implemen-
tation of other formulations. Obviously, the perspective
advocated in this work is not limited to the formulations

under discussion.

Fully integrated optimization formulation

The conventional approach to MDO problem formu-

lation is to impose an optimizer over the MDA. Given the
need to satisfy the MDA at a solution, this formulation is,
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arguably,natural.Wecallit thefullyintegratedoptimiza-
tion(FIO)formulationanduseittorepresenttheoriginal
problem,i.e.,theproblemoneideallywishestosolve.Its
mathematicalstatementis

min fl._lo(x) -- f(x, al(x),a.(x))
32

s.t. go(s, ll,al(x),a_(x)) >_ 0 (3)
gl(s, ll,.x(*)) _>0
a-.,(s,l_, ._(.)) _>0,

where, given .v, we solve thc multidisciplinary analysis

system (1)-(2) for the disciplinary analysis outputs a l(x)
and a2 (x). The function f represents the system-level ob-

jective.
The FIO formulation is also known as Multidisci-

plinary Feasible [6] in the nonlinear programming com-

munity and sometimes as "All-in-One" in the engineering

community. The first term refers to maintaining feasibility

with respect to the multidisciplinary analysis, but is some-

what misleading because it also appears to imply feasibil-

ity with respect to disciplinary constraints. The second
term resembles the term "All-at-Once" which sometimes

refers to a method at the opposite end of the formulation

spectrum (see the next subsection). The term "FIO" is

proposed to avoid these ambiguities in the naming con-
vention.

The fully integrated formulation reflects a variable re-

duction technique. At each iteration of an optimization
procedure applied to (3), the design variable vector x is

passed to the MDA system. Solving the system for the

state vector a reduces the dimension of the optimization

problem (3) by making it a problem in x only; a = a(x)

is a dependent variable.
The drawback of this fl)rmulation is the need to solve

the MDA at each iteration. The drawback is also its ben-

efit, in that all optimization iterates are feasible with re-

spect to the MDA, even far from solution. Thus, even if

optimization cannot continue to a solution, the intermedi-
ate designs will be physically realizable. Another benefit

of (3) is that is has the smallest possible number of opti-
mization variables.

SAND formulation

A tk)rmulation class at the opposite end of the spec-

trum views the full MDA purely as equality constraints:

min f.S'AND(X,al a2) -- f(x, al,a2)
.V,al ,a2

s.t. al - Al(s,ll a2) = 0
a2 - Au(s,12 al) = 0

(4)
go(s, ll,al,a2) > 0

gl(s, ll,al) >_0

gu(s, l,., a2) _>0.

In structural optimization, this approach is known as Si-

multaneous Analysis and Design (SAD or SAND) [7]. a

convention we adopt. It has also been called the All-at-

Once approach (e.g., [6]).

SAND is motivated by the nonlinear programming ex-

perience which suggests that allowing optimization algo-
rithms the freedom not to follow the MDA constraint man-

ifold (i.e., not performing MDA) far from solutions facil-

itates finding solutions at a lower expense. Optimality is

attained together with feasibility only at solutions.

Distributed analysis optimization

The class of distributed analysis optimization (DAO)

formulations relies on the introduction of auxiliary vari-

ables and consistency constraints that decouple the MDA,

thus imparting some degree of autonomy to the disci-

plinary computations.

We first rewrite the MDA (1)-(2) as the equivalent

system

al - Al(s, ll,t2) = 0

a2- A2(s,12,tl) = 0

tl - al = 0 (5)

t2-a2 = O. (6)

The auxiliary variables tl and /2 stand in for the disci-

plinary responses al and 02, respectively. They serve to

decouple the MDA equations (1)-(2).

We can now re-write the fully integrated formulation

(3) as an equivalent formulation

min
s,lt,12,tl,t_

s.t.

fDAO(S, tl,t2) = f(S,tl,t2)

gO(s, tl,t2) >_ 0

gl(s, ll,tl) >_ 0

g2(S,12,t_) >_ 0

tl = al(s, ll,t,.)

t_ : a2(s,12,tl),

(7)

where, given (s, 11,12, tl, t2), the disciplinary responses

al (s, tl, t_) and a2(s, 12_ tl) are found by solving the dis-

ciplinary analysis equations

al -Al(S, ll,t2) = 0

a2 - A2(s,12,tl) = 0.

Equations (5) and (6) are examples of interdisciplinary
consistency constraints. The degrees of freedom intro-

duced by expanding the set of optimization variables to

include t_, t2 are removed by the consistency constraints.

The DAO approach introduces a degree of disci-

plinary autonomy but respects the requirements of con-

ventional nonlinear programming analysis and algorithms

and avoids the analytical difficulties of the bilevel ap-

proaches discussed shortly.
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Othermembersof theDAOclassappearedearlier
in [4,6,8] underthenamesof "in-between"or "indi-
vidualdisciplinefeasible"(IDF)approaches.Thelatter
nameisunfortunatesinceit suggeststhattheformulation
maintainsdesignsthatsatisfythedisciplinarydesigncon-
straints,whereasit reallyreferstothefactthattheanal-
ysisoutputsareconsistentwith("feasiblewithrespect
to")thedisciplinaryanalyses,thoughnotthemultidisci-
plinaryanalysis.Toavoidthisconfusion,weusetheterm
DAOtorefertoageneralclassofmethodsthatincludes
theIDFapproachfrom[4,6,8]. Inthisformulation,we
treattheimplicitinterdisciplinaryconsistencyconstraints
inthemultidisciplinaryanalysisasexplicitequalitycon-
straintsintheoptimizationproblem.

In theDAOapproach,furtherclosurewithrespectto
disciplinarydesignconstraintsorsystemlevelconstraints
isdeterminedbythekindofoptimizationalgorithmused.
Ideally,onewouldbeabletostartwithdesignvariables
(s, ll,/72 ) for which the disciplinary design constraints de-

fined by the 9i are satisfied. One could then apply an op-

timization algorithm that maintained feasibility with re-

spect to these constraints so that all subsequent designs
obtained in the course of the optimization satisfied the

disciplinary design constraints, thereby accomplishing the

same end that other problem formulations (e.g., Collabo-

rative Optimization) achieve through the definition of its

disciplinary optimization problems.

On the other hand, it might be difficult to lind initial

design variables (s, li, 12) for which the disciplinary de-

sign constraints are satisfied. To address this difliculty,
we can expand the space of variables as follows:

min
$_O" 1,0"2 ,_ 1,12

s.t.

fDAO(S, tl, 12)

flo(Cro,tl,t2) _>0
fll(oh,ll,tt) > 0

fl2(cr_, 1-_,,t_) > 0

tl = al(crt,ll,t2)

12 = a2(o2,12,11)

O" 0 .= 8

0"1=8

0"2z8.

(8)

This relaxes the requirement that the disciplinary design

constraints be satisfied with the system-level values of s.
In particular, we now have the flexibility to select the ini-

tial o'i in a way that the disciplinary design constraints

are satisfied, exactly as in Collaborative Optimization.

One can then apply an optimization algorithm that en-

forces feasibility with respect to the disciplinary design
constraints.

It is straightforward to verify that DAO is equivalent

to the original FIO. This makes DAO easy to analyze; for

instance, if standard constraint qualifications are satisfied

by the original problem, then they also hold for the DAO

formulation. The convergence properties of optimization

algorithms applied to DAO are those of the algorithms ap-

plied to conventional FIO. Given a good solver for equal-

ity constrained optimization problems, the method is ex-

pected to be efficient. We note that nonlinear equality con-

straints are usually considered undesirable in engineer-

ing optimization, possibly due to the preference for fea-

sible iteration methods in engineering optimization soft-

ware (e.g., [?]). However, most state-of-the-art methods

in nonlinear programming do not maintain feasibility with

respect to nonlinear equality constraints at every iteration.

Instead, feasibility is attained only at solutions. Thus, a

good equality constrained solver can generally handle ad-
ditional nonlinear equality constraints with relative ease.

Collaborative Optimization

Collaborative Optimization (CO) [9-20] is a bilevel

approach with a system-level problem of the following
form:

min f(S, tl,12)

_,t,,t_ (9)
s.t. C(S, tl,/2) = 0.

There are N interdisciplinary consistency constraints
C = {ci,...,cx} which we describe presently.

The system-level problem controls the system-level de-

sign variables s and interdisciplinary coupling variables

(t l, t2), which serve as system-level target values for the

disciplinary inputs and outputs al and a_,.

To reformulate (3) along the lines of CO, we intro-

duce new disciplinary design variables ol, o'2 that relax

the coupling between the subsystems through the shared

system design variables s. The variables cri serve as local

copies (at the level of the disciplinary subproblems) of the
shared variables s.

The system-level problem issues design targets
(s, tl, t2) to the constituent disciplines. In the lower-level

problems, the disciplines design to match these targets,

as follows. In Discipline 1, we are given (s, tl, 12) and
compute 6i (s, tl, t_) and/1 (s, tl, t2) as solutions of the

following minimization problem in (o'i, ll ):

min _ II_a-sll_+ll_(_a,z_,t_.)-t_ II"_
0"1 ,_1

s. t. 91(al,li,at(_i,ll,t2)) >_ O,

where al

problem via the disciplinary analysis

(10)

is computed in this disciplinary optimization

al =At(_l,li,t2).

Overbars (e.g., oi,/-1) indicate optimal solutions of sub-

system problems as a function of system-level variables.

In the disciplinary subproblem (10), the system-level vari-

ables (s, tt, t2) serve either as parameters or targets that

we seek to match. An analogous problem for Discipline 2
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definessolutions0"2(s, tl, t2) and/2(s, tl,/2) of the prob-
lem

min 7 I[_._-sIf+ll_,(_,,I.,,ta)-t., II2
O,2 _12 ....

S.t. g2(o2,12,a2(o2,12,tl)) _ O.

(11)
Again, a2 is computed via the disciplinary analysis

(t2 = A2(o2,12,/1).

Reformulating the FIO formulation along the lines of

CO also requires the introduction of the third set of

system-level constraints and a "Discipline 0" subproblem

that represents the system-level design constraint. Op-
timization of "Discipline 0" treats the system-level de-

sign constraints to obtain o-0(s, tl,/2), _I(S, tl, i2), and
(2(s, tl,t2):

min _ IIo'o- s I1"_+ tl<' - t, 11-2+ I1_'_- t., II"
ao,q1,G "

S.t. g0(o0,C1,C2) _ O.

(12)
Disciplinary minimization subproblems of the form

(10)-(12) distinguish CO. The subproblems can be solved

autonomously. By solving the subproblems, we eliminate

the disciplinary design variables li from the system-level

problem, and decouple the calculation of the disciplinary

analysis outputs ai. Information from the solutions of
the disciplinary problems (10)-(11) is used to deline the

system-level consistency constraints ci.
We discuss the version of CO in which the consis-

tency condition is to drive to zero the value ot' the tar-

get mismatch objective in subproblems (10)-(l 1). At the

system-level, the interdisciplinary consistency constraints

are simply the optimal values of the objectives in (10)-

(11). That is, the consistency constraints C = (cj, c2) are
defined as

c0(s,tl,t__) = :j II(_o(_,tl,t_)-_ It2

+11 I1"-'
+ II_2(8' "/1' /2) -- '2 I1"] (13)

1

cl(s, tl,t,.) =

tl) - tl It_] (14)II(11(0"1(8_1, t2),ll(s, tl,t2),

C2(8,tl, "/2) = _ II_'2(_,tl, t_) -- SI1"+

II a2{_2(s,t,,t2),12(S, tl,t2),t2) - t_ If] (15)

We call this version CO2, where the subscript "2" refers

to the fact that the ci are sums of squares.

Simple examples of optimization problems formu-

lated as Collaboration Optimization can be found in [ I ].

Optimization by Linear Decomposition

Optimization by Linear Decomposition (OLD) [21-

24], maintains interdisciplinary consistency at the system
level while seeking to minimize the violation of the disci-

plinary design constraints at the subsystem level.

In the lower-level problems, the disciplines use their
local design degrees of freedom to minimize the violation

of the disciplinary design constraints, subject to matching
the target value for the disciplinary output that is fed into

that discipline. In Discipline 1, we are given (s, tl, t2) and

compute Ii(s, tl, t2) as a solution of the following mini-
mization problem in 11:

min Cl(S, ll,tl,t,)

s.t. tl =al(s, la,t2),
(16)

The analysis output al is computed in this disciplinary

optimization problem via the disciplinary analysis

al = Al(s, lt,t2).

In the disciplinary subproblem (16), the system-level vari-

ables (s, tl, t2) serve as parameters in the disciplinary op-
timization problem.

The disciplinary objective Cl is any function with the
following property:

For any (s, ll, 12), we have

Cl(S, ll,lI,12) _ 0

ifandonly if gl(s, ll,al(S, la,t2)) __ 0 for
all ll satisfying al(s, ll,t_) - tl = O.

There is an analogous problem for Discipline 2. Given
(s, ll,/2), we compute 12(s, tl,/2) as a solution of the fol-

lowing minimization problem in l_2:

min c2(s,12,tl,t2)
12

s. t. t_ = a2(o'2,12,11).
(17)

Again, a2 is computed via the disciplinary analysis

a2 = A2(s,12,/1).

The subproblems (16)-(17) can be solved au-

tonomously. As in CO, we eliminate the disciplinary de-

sign variables li from the system-level problem via the

solution of the disciplinary subproblems.
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Theoptimalvalueoftheobjectivein thedisciplinary
problems(16)-(17)definesthesystemqevelconsistency
constraintsei. The resulting system-level problem is

min

s.t.

All the approaches we discuss here can be viewed

from the perspective of eliminating various subsets o1"
variables from the SAND formulation. For instance, if we

begin with a SAND formulation but require that our de-
f(s, ct: (s, [: (s, l a, t2), 12), a2(s,/2 (s, l l, 12), t l )) signs satisfy the equality constraints representing the mul-

go(s, I1, (t.l(8, [1 (8, ll, 12), a2(s, 12(s l 1,/2), tl )) _)'tiflisciplinary analysis. Begin with the following SAND

el (s,/l (s, 11, t2),/1,/2) "( 0 tormulation,

c2(s,_(s,/:,/2),/1,t_) < 0

(18)
One choice of discrepancy function is

C I(8,ll,/1,t2) ---- Z(illill(O,gJ(s, ll,a 1(S,ll,/2)))) 2

J
(19)

t.,)= y].(,nin(O, t:))))
J

(20)
This objective is smooth (CI). Also note that ci > 0, so

the system-level constraint ci < 0 is tacitly an equality
constraint ci = 0.

OLD has been proposed in connection with an algo-

rithm for its solution (e.g., [?,23]). The algorithm at-

tempts to avoid the expense of performing subsystem op-

timization problems every time a constraint or a constraint

derivative is required for the solution of the system-level

optimization problem. Instead, [?,23] propose an ap-

proach that could be viewed as analogous to sequential

quadratic or linear programming (SQP or SLP, respec-

tively). In this approach, the system-level problem is

solved with linearized constraints; i.e., for each design cy-
cle, the constraint value and constraint derivative are held

constant. The distinction from SQP or SLP is that the

objective is used instead of its quadratic or linear model.

This algorithm will be subject to the analytical features of

OLD as would be all algorithms that rely on linearlization
of the constraints, such SLP or SQP.

Relationship among the formulations

Approaches to MDO problems are generally based

on techniques for eliminating variables from the original

problem. The variables are eliminated by enforcing vari-

ous subsets of the constraints in different ways. In [25],

we say that an MDO formulation is closed with respect to
a given set of constraints if the formulation--rather than

an optimization algorithm for its solution--assumes that

these constraints are satisfied at every iteration of the opti-

mization. If the formulation does not necessarily assume

that a set of constraints is satisfied, we say that that for-
mulation is open with respect to the set of constraints.

For instance, consider conventional optimization ap-
plied to the FIO formulation. We perform a mull/disci-

plinary analysis at each step. This corresponds to main-

taining closure of all the disciplinary analysis constraints
in (3).

min f(s,/:,t2)
8,1t,12,t:,t2

s.t. gl(s,ll,tl) ) 0

g2(s,12,t2) ) 0

tl = al (21)

/2 = a2

a 1 = A 1 (8,/1,/2)

a2 : A.2(s,12,/1).

If we require that at every iteration a: and a2 satisfy the
last two equality constraints,

al - Al(s,ll,/2) = 0

a2 - A2(s,12,tl) = O,

the we obtain the DAO formulation (7). In this reduction

we are using these equality constraints to eliminate the

analysis outputs a:, a_ as independent variables from the

optimization problem.

If, in addition, we eliminate t l, t2 as independent vari-
ables from (21) by always requiring that

tl : al(S, ll,12)

t2 : a2(s,12,ll),

then we obtain the fully integrated approach (3), since we

are requiring our designs to satisfy the multidisciplinary
analysis consistency equations (1)-(2).

OLD can be viewed as taking the further step of elim-

inating the disciplinary design variables ll, 12 as indepen-

dent variables from the optimization problem, in addition

to eliminating tl, 12. This elimination is accomplished via
the subsystem problems (16)-(17). Thus, in OLD, multi-

disciplinary analysis is performed at each iteration.

CO, on the other hand, eliminates the disciplinary de-
sign variables ll,12 in DAO via (10)-(11), but does not

eliminate the coupling variables tl,tS. Like DAO, the

mull/disciplinary analysis is enforced via the system-level
constraints.

Modularity in implementation

In this section we illustrate how the computational

modules needed for optimization algorithms, particularly
the elements needed for sensitivity calculations, can be

implemented autonomously by discipline. Moreover, one

can reconfigure the same set of computational elements to

6
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implementoneorotheroftheformulationsdiscussedpre-
viously.Thissuggeststhat,if properlyimplemented,all
oftheformulationswehavediscussedrequireroughlythe
sameamountofworktoimplement,andmuchoftheim-
plementationcanbedoneautonomouslyin the individual
disciplines.

For instance, consider the sensitivity information re-

quired to apply an optimization algorithm to DAO. We

will show that the same pieces are needed to implement

optimization for the fully integrated approach. Optimiza-

tion of DAO requires the following sensitivities. For the
objective fDao(S, tl, 12), we need

Of Of Of

0S ' 0. t 1 ' 0t 1 (22)

For the design constraints 91 (s,/1, t l) and g2(s, 12, t2) we
need

091 091 Ogl

O_-s' 011' 0tl (23)

and
092 09_ 092

Os 012'0t2" (24)

Finally, for the consistency constraints ll - A1 (s,/1, Is)
and 12 - A2(s,l_,tl) we need

0A1 OA1 OA1

Os ' 011 ' 0t2 (25)

and
0A_ 0.42 0.42

Os ' Ol2' Oil (26)

In FIO approach, we need to compute the sensitivities
of the objective

fFlO (S, [1,/2) = f(s, a I ($,/1,/2), a2(s, 11,/2)).

By the chain rule,

Of FlO Of Of 0al Of Oct_

Os - Os + Oa_ Os + Oa_ Os (27)

Of FIO Of Oal Of Oct2

Oil - Oat 011 + Oa---2_0l_ (28)

Ofmo Of Oal Of Oa2

012 -- Oal 012 + 0(I 20l 2 (29)

We compute the derivatives of al and a2 by implicit dif-

ferentiation of the multidisciplinary analysis equations

al - Al(S, ll,a2) = 0

a2- A2(s,12,al) = O.

This yields

OA2 0a2 = --

Oal I

OA 1 \

)0A2

(30)

0.42 Oa2 = '

Oal I _ 0

(31)
and

i - 0%-7
0A2 Oct, = -- 0A2

Oa I [ _

(32)
which must be solved for the sensitivities of al and a2

with respect to the design variables (s, ll,12). (These

are discussed as the "generalized sensitivity equations" in
[26]).

Now compare the quantities required for the FIO sen-

sitivity calculations (27)-(32) with those listed in (22)-

(26) as required for the DAO sensitivity calculations. We
see that these are the same. Moreover, these constituent

pieces can be implemented for both approaches in a man-

ner that respects disciplinary autonomy, if one starts with

the non-integrated pieces of the multidisciplinary analysis

as in the DAO formulation. These pieces are then inte-

grated differently in DAO and FIO; however, the disci-

plinary building blocks are the same.

A similar examination of the sensitivities of the de-

sign constraints .ql and 9--' in the FIO approach leads to

the same conclusion. The computational pieces needed
to implement optimization for the FIO can be assembled

from those needed to implement optimization for the DAO
formulation.

Likewise, if one examines the sensitivities that must

be computed for the disciplinary subproblems in either

CO or OLD, one finds that they involve the pieces in (22)-

(26). The sensitivities of the system-level constraints are

then computed via post-optimality sensitivity analysis of

solutions of the disciplinary subproblems. This requires
only computational components that are present in the
DAO formulation, as well.

Algorithmic interactions

In the previous section we saw how one could, in prin-
ciple, rearrange the computational components associated

with the optimization of one formulation to obtain the

pieces need to implement another. Of course, this may
require significant effort to do. In this section we discuss

how for some of the formulations, minor changes in an op-

timization algorithm designed for its solution may yield
an optimization algorithm for the solution of an alterna-

tive formulation. This can make it straightforward to pass
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betweenformulationsandfacilitatestheuseofhybridap-
proaches,e.g.,approachesthatmayuseoneformulation
farfromsolutionsandanotherclosetosolutions.

As anexample,weexaminetheDAO,FIO,and
SANDformulations,andforsimplicity,consideronlythe
constraintsformedbythedisciplinaryanalysesandinter-
disciplinarycouplings.Thus,thesimplificdFIOformula-
tionis

m!n fFgo(x)= f(x, al(x),a2(x)), (33)

where, given x, we solve the multidisciplinary analysis
system

A..(x) = _,., A.(.,_,_(.),..(.)) =0
(34)

The simplitied SAND formulation is

min fSAND(X,al,a2) =- f(x, al,a,_,)
x_ot fl 2

s.t. Al(x,al,a2) = 0 (35)

A2(X,al,a2) = 0.

Finally, the simplified DAO formulation is

min fDAO(X, al,a2)
2"_(ll,t22,tl,t2

s.t. tl - al(x,tl,t2) = 0 (36)

t2-- a2(x,tl,12) = O.

Let Wi be the matrix representing the basis of the null-

space associated with the derivative of the block Ai. Then,
relying on implicit differentiation and the derivations in

[4], we note the following relationship among the sensi-
tivities required for the three methods:

• Suppose, (x, a) is feasible with respect to (34).

Then the (projected) gradients at (.e, el) of the FIO

and SAND formulations are related by

r" '

V, felo (x) = I"["_AND (X, a)V ..... f._','A?¢D(x, ¢t),

where WSA_VD denotes a particular basis for the

null-space of U_4 T in the SAND approach.

• Suppose that (x, a) is feasible with respect to (36).
Then

7T
'_ DAOVx,afDAO (a.', a) =

["_¢AND (X, a)Yr_:,_f.,.AND (X, a).

One can then use these relationships to implement a

reduced-basis optimization algorithm lor the thrce formu-

lations with minimal modifications. Here we only sketch
the conceptual algorithm.

Consider one step of a reduced-basis algorithm for the
SAND formulation:

1. Construct a local model of the Lagrangian about the

current design.

2. Take a substep to improve feasibility.

3. Subject to improved feasibility, take a substcp to
improve optimality.

4. Set the total step to the sum of the substeps, evalu-
ate and update.

Performing the multidisciplinary analysis (34) after

step 4 yields a corresponding algorithm for FIO. Solv-
ing the disciplinary equations as in DAO, we obtain an

algorithm for DAO. Thus, passing between algorithms for

distinct formulations is a straightforward step.

Incorporating the inequality constraints into this pro-
cedure is more involved and will be considered elsewhere.

Here we wish to emphasize the general principle: by judi-

cious implementation of the disciplinary sensitivity com-

ponents, one can impart a large degree of flexibility to
portions of computation.

Concluding remarks

In this paper, we discussed the requisite computational
components (the function and derivative information) for

the implementation of optimization for several MDO for-

mulations. The amount of direct and auxiliary informa-

tion that has to be implemented differs from one formu-

lation to another. For instance, distributed optimization
approaches optimize with respect to local variables at the

subproblem level and with respect to the global variables

and interdisciplinary couplings at the system level, while

distributed analysis approaches optimize with respect to

the complete set of variables at the system level. How-
ever, the problem structure of MDO ensures that simi-

lar sensitivity information--and hence the implementa-
tion effort--will be required for all tbrmulations.

Moreover, if the disciplinary sensitivity information is

implemented appropriately, one can transfer sensitivity in-

formation among several of the formulations in a straight-

[brward manner and with minimal expense, thus enabling
experimentation with a variety of problem formations. We

gave an example of such re-use of information with min-
imal expense for the DAO and FIO formulations. While

DAO formulation does not exhibit the same degree of ex-

ecution autonomy as do the bilevel optimization methods
we discussed (CO and OLD), it does exhibit an auton-

omy of problem integration or implementation and can bc

solved by conventional optimization algorithms robustly
and efficiently.

As a matter of methodology, we caution against imple-
menting the multidisciplinary analysis in an obvious man-

ncr (i.e., simply via a fixed-point iteration), without con-

sideration of later integration into an optimization prob-
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lem.Themultidisciplinaryanalysis,if implementedina
modularfashion,canbeanendin itself,butcanalsobe
usedinavarietyofoptimizationproblemformulations.

Insummary,whenexaminingcandidateproblemfor-
mulationsandoptimizationalgorithms,re-useof disci-
plinaryinformationandtheflexibilityinformulationand
solutionshouldbeconsidered.

References

[1] Natalia M. Alexandrov and Robert Michael Lewis.

Analytical and computational aspects of collab-

orative optimization. National Aeronautics and

Space Administration, NASA/TM-210104-2000,

April 2000.

[2] Natalia M. Alexandrov and Robert Michael Lewis.

An analysis of some bilevel approaches to multi-

disciplinary design optimization. Technical report,

ICASE, Mail Stop 132C, NASA Langley Research

Center, Hampton, Virginia 23681-2199, June 2000.

[3] Natalia M. Alexandrov and Robert Michael

Lewis. Analytical and computational properties
of distributed approaches to MDO. AIAA-

2000-4718, 2000. Presented at the Eighth

AIAA/USAF/NASA/ISSMO Symposium on

Multidisciptinary Analysis and Optimization.

[4] R. M. Lewis. Practical aspects of variable re-

duction lbrmulations and reduced basis algorithms

in multidisciplinary design optimization. In N.M.
Alexandrov and M. Y. Hussaini, editors, Multi-

disciplinary Design Optimization: State-of-the-Art,

Philadelphia, 1997. SIAM.

[5] J. Sobieszczanski-Sobieski and R. T. Haftka. Multi-

disciplinary aerospace design optimization: Survey

of recent developments. Structural Optimization,
14(1 ): 1-23, August 1997.

[6] Evin J. Cramer, J. E. Dennis, Jr., Paul D. Frank,

Robert M. Lewis, and Gregory R. Shubin. On al-

ternative problem formulations for multidisciplinary

design optimization. In Proceedings of the Fourth

AIAA/USAF/NASA/OAI Symposium on Multidisci-

plinary Analysis and Optimization, pages 518-530,
1992.

[7] Raphael T. Haftka, Zafer Giardal, and Manohar P.

Kamat. Elements of structural optimization. Kluwer
Academic Publishers, Dordrecht, 1990.

[8] J. E. Dennis, Jr. and Robert Michael Lewis. A com-

parison of nonlinear programming approaches to an

[9]

[10]

[11]

[12]

[131

[141

[15]

[16]

[17]

elliptic inverse problem and a new domain decom-

position approach. Technical Report TR94-33, De-

partment of Computational and Applied Mathemat-
ics, Rice University, Houston, Texas 77005-1892,

August 1994.

R.D. Braun. Collaborative Optimization: An archi-

tecture for large-scale distributed design. PhD the-

sis, Stanford University, May 1996. Department of
Aeronautics and Astronautics,

R. D. Braun, A. A. Moore, and I. M. Kroo, Collabo-

rative approach to launch vehicle design. Journal of

Spacecraft and Rockets, 34:478-486, July 1997.

R. D. Braun and I. M. Kroo. Development and appli-

cation of the collaborative optimization architecture

in a multidisciplinary design environment. In N. M.
Alexandrov and M. Y. Hussaini, editors, Multidisci-

plinat 3, Design Optimization: State of the Art, pages
98-116. SIAM, 1997.

Ian Sobieski and Ilan Kroo. Aircraft design using

collaborative optimization. AIAA paper 96-0715,

presented at the 34th AIAA Aerospace Sciences

Meeting, Reno, Nevada, Jan. 15-18, 1996, 1996.

L. A. Schmit, Jr. and R. K. Ramanathan. Multi-

level approach to minimum weight design including

buckling constraints. AIAA Journal, 16(2):97-104,

February 1978.

Lucien A. Schmit, Jr. and Massood Mehrinfar. Mul-

tilevel optimum design of structures with fiber-

composite stiffened-panel components. AIAA Jour-

nal, 20(1 ):138-147, January 1982.

L. A. Schmit and K. J. Chang, A multilevel method

for structural synthesis. In A collection of techni-

cal papers : AIAA/ASME./ASCE/AHS 25th Struc-

tures, Structural Dynamics and Materials Confer-
ence. American Institute of Aeronautics and Astro-

nautics, 1984.

H. M. Adelman, J. L. Walsh, and J. I. Pritchard.

Recent advances in integrated multidisciplinary

optimization of rotorcraft, AIAA paper AIAA-

92-4777-CP. In Proceedings of the Fourth

AIAA/USAF/NASA/OAI Symposium on Multidisci-

plinao, Analysis and Optimization, pages 710-721,

September 1992.

Jaroslaw Sobieszczanski-Sobieski. Two alternative

ways for solving the coordination problem in multi-
level optimization. Structural Optimization, 6:205-

215, 1993.

9

American Institute of Aeronautics and Astronautics



[18] R.J.BailingandS.Sobieszczanski-Sobieski.Opti- [22]
mizationofcoupledsystems:A criticaloverviewof
approaches.AIAAPaper94-4330,September1994.
PresentedattheFifthAIAA/USAF/NASA/ISSMO
SymposiumonMultidisciplinaryAnalysisandOp-
timization,PanamaCityBeach,Florida,September
7-9,1994.

[231
[19] R.J.BailingandS.Sobieszczanski-Sobieski,An

algorithmfor solvingthe system-levelproblem
in multileveloptimization. AIAA Paper94-
4333,September1994. Presentedat theFifth
AIAA/USAF/NASA/ISSMOSymposiumonMul- [24]
tidisciplinary Analysis and Optimization, Panama

City Beach, Florida, Septembcr 7-9, 1994.

[20] J.L. Walsh, K.C. Young, J.l. Pritchard, H.M.

Adelman, and W.R. Mantay. Integrated aerody- [251
namic/dynamic/structural optimization of helicopter

rotor blades using multilevel decomposition. Tech-

nical Report NASA TP 3465, NASA Langley Re-
search Center, January 1995.

[21] Jaroslaw Sobieszczanski-Sobieski. A linear decom- [26]

position method for large optimization problems--

blueprint for development. Technical Report TM
83248, NASA, 1982.

Jaroslaw Sobieszczanski-Sobieski, Benjamin James,
and Augustine Dovi. Structural optimization by

multilevel decomposition. In Proceedings of the

AIAA/ASME/ASCE/AHS 24th Structures, Structural

Dynamics, and Materials Conference, May 1983.

AIAA Paper 83-0832-CP

Jaroslaw Sobieszczanski-Sobieski, Benjamin B.

James, and Michael E Riley. Structural sizing by

generalized, multilevel optimization. AIAA Journal,

25(1 ):139-145, January 1987.

Jaroslaw Sobieszczanski-Sobieski. Optimization

by decomposition: A step from hierarchic to non-

hierarchic systems. Technical Report TM 101494,

NASA, Hampton, Virginia, Septembcr 1988.

N. M. Alexandrov and R. M. Lewis. Comparative

properties of collaborative optimization and other

approaches to MDO. In Engineering Design Opti-

mization. MCB University Press, 1999.

Jaroslaw Sobieszczanski-Sobieski. Sensitivity of
complex, internally coupled systems. American In-

stitute of Aeronautics and Astronautics (AIAA) Jour-
nal, 28(I):153-160, 1990.

10

American Institute of Aeronautics and Astronautics


